



Middlebury College's McCullough Student Center is comprised of multiple elements, including the original 1911, hipped roof, large volume structure; a 1963 addition to the south, and a 1993 addition of two octagonal wings and connecting flat-roof structures. The resulting series of parts lacked a coherent sense of place and identity prior to the renovation.

The 2009 renovation sought to clarify the organization and accessibility of the building and increase the usability of the existing spaces. Upstairs, the renovation focused on returning the Social Space/Performance Hall — a grand, double-height room fronting the campus's Main Quad to the north that had been initially designed as a combination gymnasium / theatrical space — back to its original character while adding modern amenities such as an elevator and new telescoping seating.

Downstairs, the labyrinthian circulation system and disparate programmatic elements were simplified and clarified while at the same time improving accessibility to multiple levels.

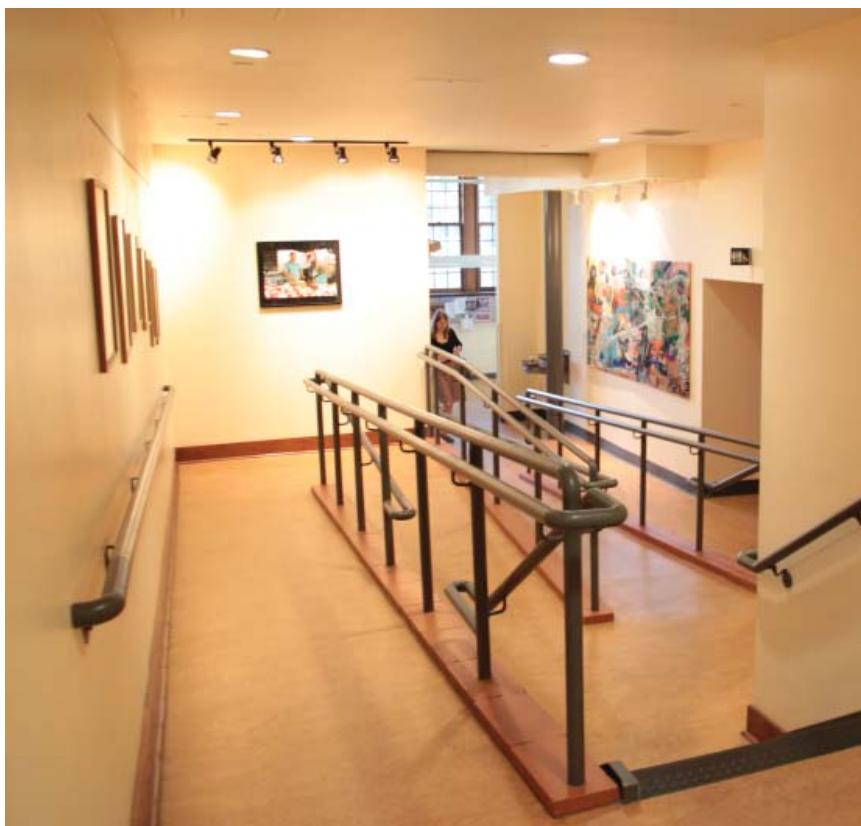
Along with sustainable features such as FSC certified wood flooring and paneling, and the reuse of the existing structural steel from the removed mezzanine, a detailed analysis of the building envelope revealed significant areas of energy loss due to air infiltration, particularly in the roof above the grille attic. These were addressed as part of a comprehensive upgrade to the building envelope.

Architect: Michael Dennis & Associates

*Andrew M. Brockway  
Project Manager & Project Architect*

Award: Assoc. of General Contractors of Vermont  
2009 Renovation of the Year

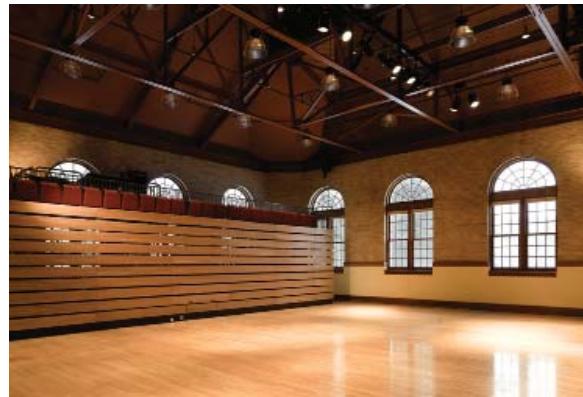
#### McCULLOUGH STUDENT CENTER RENOVATIONS


Middlebury College  
Middlebury, VT

Size: 12,050 sf conditioned  
8,600 sf unconditioned

Completed: 2009




*Circulation with handicapped lift prior to renovation*



Relatively inexpensive upgrades such as new flooring, new and "livelier" paint colors, and new lighting dramatically altered the feeling of the space.

"Simple" but important changes - such as removing unnecessary doors and creating a seating area directly on the circulation route - transformed a labyrinthian system of circulation into a place of gathering and exchange.

A new ramp in McCullough is integrated into the stair system dissolving the distinction between abled and disabled users. At the same time, lighting and track work is designed to support the display of art, further diminishing the "stigma" of the ramp and extending its meaning to the larger College community.



*House seating with mezzanine prior to renovation*



## Building Envelope Energy Performance

A detailed empirical audit and analysis of the building envelope's thermal performance was conducted as part of an overall sustainable design effort. The analysis included infrared thermography to determine hot and cold spots within the envelope as well as a blower door test prior to construction to determine air infiltration rates. That data was used to write a performance specification for the envelope upgrades. A blower door test subsequent to installation ensured that the envelope upgrades met the specifications. Infrared thermography was used to detect specific remaining areas of leakage.

It is important to note that most of the energy savings comes via air infiltration reduction as opposed to an increase in the R-value of the walls and ceiling. Air infiltration is a significant factor in envelope performance and is often overlooked, or "misestimated" by energy modeling or a simple review of the drawings.

A data logger was placed in the grille attic post-occupancy. It recorded a narrow and consistent range of internal temperature and humidity in spite of the greatly varying outdoor conditions. This could not have been possible prior to the renovation.

### Middlebury College McCullough Student Center Renovation Building Envelope Upgrade

#### R-value Prior to Renovation

| Area                      | R-value       | Square Foot Skin Area      | Weighted Average R-Value          |
|---------------------------|---------------|----------------------------|-----------------------------------|
| Grille Concrete Ceiling   | 14.0          | 8,200 assume 4" fiberglass | 6.77                              |
| Social Attic              | 27.3          | 1,449 assume 8" fiberglass | 2.33                              |
| Social Cathedral          | 27.3          | 4,500 assume 8" fiberglass | 7.24                              |
| Social Cathedral -Uninsul | 1.0           | 1,295                      | 0.08                              |
| Vestibule Walls           | 3.5           | 795                        | 0.16                              |
| Vestibule Roof            | 1.0           | 240                        | 0.01                              |
| Social Wainscot           | 3.5           | 483                        | 0.10                              |
| <b>Total</b>              | <b>16,962</b> |                            | <b>16.70</b> Sum Weighted Average |

#### R-value After Renovation (with closed cell polyurethane foam insulation)

| Area              | R-value       | Square Foot Skin Area | Weighted Average R-Value          |
|-------------------|---------------|-----------------------|-----------------------------------|
| Grille Metal Roof | 45            | 8,955                 | 22.12                             |
| Social Attic      | 45            | 1,953                 | 4.82                              |
| Social Cathedral  | 51            | 5,795                 | 16.22                             |
| Vestibule Walls   | 20.0          | 795                   | 0.87                              |
| Vestibule Roof    | 46.0          | 240                   | 0.61                              |
| Social Wainscot   | 13.5          | 483                   | 0.36                              |
| <b>Total</b>      | <b>18,221</b> |                       | <b>45.00</b> Sum Weighted Average |

#### CONDUCTION Savings

|                     | Area in sf | R-value | U-value | HDD  | Hours/day |   | BTUs/annual |
|---------------------|------------|---------|---------|------|-----------|---|-------------|
| Prior to Renovation | 15,444     | 16.7    | 0.060   | 7554 | 24        | = | 167,704,316 |
| After Renovation    | 16,703     | 45.00   | 0.022   | 7554 | 24        | = | 67,301,092  |

Annual Heating BTU Reduction: 100,403,225 BTUs

Annual Reduced #6 Oil Use: 810 Gallons

#### AIR LEAKAGE (per blower-door tests) Savings

|                     | Building Leakage Rate in ACHnat | Building Volume (ft^3) | HDD  | Hours/day |   | BTUs/annual |
|---------------------|---------------------------------|------------------------|------|-----------|---|-------------|
| Prior to Renovation | 0.40                            | 688,437                | 7554 | 24        | = | 898,638,295 |
| After Renovation    | 0.25                            | 746,344                | 7554 | 24        | = | 608,891,046 |

Annual Heating BTU Reduction: 289,747,249 BTUs

Annual Reduced #6 Oil Use: 2,337 Gallons

#### TOTAL Annual Savings

Combined Conduction and Air Leakage BTUs Saved  
Combined Conduction and Air Leakage Gallons of #6 Oil Saved

390,150,474 BTU  
3,146 gallons